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SUMMARY

We construct a framework for assessing the risk that the uncertainty in the plant feed and physical
parameters may mask the loss of a reaction product. To model the plant, we use a nonlinear, quasi-
steady-state model with stochastic input and parameters. We compute the probability that more than
a certain product amount is diverted, given the statistics of the uncertainty in the plant feed, in the
values of the chemical parameters, and in the output measurement. The uncertainty in the physical
parameters is based on the one provided by the recently developed concept of thermochemical tables.
We use Monte Carlo methods to compute the probabilities, based on a Cauchy-theorem-like approach
to avoid making anything but the safest asymptotic assumptions, as well as to avoid the excessive
noise in the region of low-probability events.

1. Introduction

Chemical plant safety is an issue that affects a large number of plants in the United States.
Currently, more than 15,000 chemical plant sites in the United States are required to file a risk
management plan with the U.S. Environmental Protection Agency [3]. Such plans consider both
worst-case scenarios and alternative case scenarios. Such alternatives include the moderately
abnormal release of controlled materials or illegal plant interference [13]. While sudden, massive
release is likely detectable by safety measures in place, the same cannot be said of long-term,
slow releases that can be confounded with measurement noise or other uncertain information.
In this paper, we present a novel framework that uses the plant model and prior statistical
information about the uncertainty for estimating the risk posed by a diverting agent to a
chemical plant. The diverting agent can be damage, an insufficient design, or an individual
engaged in the illegal activity [3, 13].

For this initial application of our framework, we will assume that the chemistry is described
by nonlinear equations, that is, that the reactions involved are in steady state [23]. This
approximation is reasonable in the case where the chemical reactions have time constants that
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are much smaller than the typical frequencies in the input [7, 23]. However, to preserve a
dynamical aspect of the inputs, which is essential for our work, we will employ a description
of the chemical process whereby, due to our assumption of the chemical process having much
smaller reaction times compared to the characteristic times over the input, the equilibration
following the introduction of additional feed and extraction of the reaction products is
instantaneous [7]. Therefore, our model will have a discrete dynamics due to the progressive
introduction of additional feed and extraction of the reaction products, but it will have no
dynamics due to the chemistry. The equations of state are obtained by requiring that the
reaction rates be zero and that the total mass of the individual components be conserved.

The key question that we are interested in answering is the following: Given the uncertainty
in the input of a plant and in the physical parameters of the reaction, how confident can one
be of the estimate of the amount of reaction product diverted from the plant?

2. Description of the Setup

Our scheme is depicted as in Figure 1, with the notations therein. The input X(t) represents
the amount of feed (number of mols, for example) at time t. The amount cannot be
exactly determined, and this is modeled by the influence of noise, E(t) which is combined
(“modulated”) with the input, to obtain the stochastic feed signal X̂. In all our simulations,
we will consider additive noise, but other types of modulation can be accounted for in similar
fashion. In Section 4 the noise input is modeled by equations (29) and (30). The setup that
we will use for the uncertainty in the input will be one of colored noise, where we model
the fact that subsequence samples in the input here, the reactant feeds, have large amounts
of correlation. This is indeed a valid assumption, for example, in a reprocessing plant where
successive amounts of feed originate in the same area of a nuclear reactor and are therefore
significantly correlated.

X̂(t) constitutes the plant input. In Section 4 this is modeled by equations (19) – (26). After
X̂(t) is processed in plant, Y (t) is produced. In this paper, we assume a steady-state operation,
and the modeling of this is done by a multivariate nonlinear function, in a manner that we
describe in Section 2.1.

However, we now assume that there is an interference in the system. This can occur either
because some output is diverted unbeknownst to the plant operator. We will call the mechanism
by which this is done a “divertor”, whether human (illegal interference) or technological (such
as unaccounted-for technological losses). The amount that is so diverted we call D(t).
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Figure 1. Block Description of the Chemical Plant
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In addition, we assume that the output cannot be faithfully measured, that is, that the
measuring instruments have some amount of error. To achieve that, we will assume that the
output has an additive noise in it, N(t). Similarly, for the input noise we assume that we have
sufficient data to determine its correlation and average faithfully. N(t) is generated by (28) for
the discrete case. We thus have the relationship

D(t) = Y (t) − O(t) + N(t).

In this work, we assume that the noise models N(t) and E(t) have a simple quasi-
stationary behavior, originating in stationary filtered and perhaps nonstationarily scaled white
noise. Nonetheless, our approach can be easily modified to account for nonstationary noise
both in the input and in the output. On the other hand, subsequent study is needed to
determine appropriate models for such a noise, since the numbers of degrees of freedom in
the representation of the noise increases tremendously for non stationary processes, making
it difficult to find enough data for calibration. In this work we do not address the parameter
identification of the noise models; this is a well-covered topic in previous research, and only a
marginal topic of this work.

2.1. Plant Model

The steady-state plant model we will use is obtained from a multivariate nonlinear function
that has two components. One originates in the condition of the reaction rates being 0, the
steady state; the other originates in the condition that we preserve mass balance in the plant.

We introduce the effective reactant input in the plant, which we call XIN(t), and we split
the output vector Y into two parts: the part that denotes the reaction product Y OUT and the
part that denotes what is left of the reactants after equilibration, Y X . First, we assume that
the reaction product is always obtained in a equilibrium conditions. Therefore, we write the
equation

F1(Y OUT , Y X ;α) = 0,

where the left-hand side of the equation represents the algebraic expression of the reaction rate.
The parameters α represent the physical parameters on which the reaction rates or equilibrium
equations depend. An important example of such parameters is the equilibrium parameters
[18, 16]. The second equation models the mass balance. That is, we write

F2(XIN , Y X , Y OUT ) = 0.

The effective input vector, XIN , models the total reactant quantity that exists in the reactor.
It therefore has two parts: the amount of that is put into it, X̂, and the amount that remains
after equilibration, Y X . Our rationale is as follows. We model the reactor as a burst and
equilibrate device. In the case of a pulsed distillation column, this is achieved if we average the
equations over the length of the column. That is, we feed X̂ into the reactor, which already
has about Y X reactant in it after the prior equilibration, and we let the reactor equilibrate,
producing Y OUT as the reaction product.

If we consider continuous time, the relations above can be written as a function of the feed
in the following manner:

0 = F (X̂(t), Y (t);α) =
(

F1(Y OUT (t), Y X(t);α)
F2(X̂(t) + Y X(t), Y X(t), Y OUT (t))

)
. (1)
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If we consider discrete time, we have two options. Either we use the relationship above to
write

0 = F (X̂(tl), Y (tl);α) =
(

F1(Y OUT (tl), Y X(tl);α)
F2(X̂(tl) + Y X(tl), Y X(tl), Y OUT (tl))

)
, (2)

or, as an alternative, we consider that the effective input in the plant at time tl is XIN(tl) =
X̂(tl) + Y X(tl−1), that is, that the net input in the reactor includes the product of the last
equilibration, which results in the model

0 = F̂ (X̂(tl), Y (tl), Y (tl−1);α)

=
(

F1(Y OUT (tl), Y X(tl);α)
F2(X̂(tl) + Y X(tl−1), Y X(tl), Y OUT (tl))

)
. (3)

Of course, in the limit of small time steps and short bursts, the two models will give the
same behavior. For relatively large time steps, however, it may be more beneficial to use the
latter, since it is a more accurate description of the dynamical process.

In case (2), we have that F (X, Y ;α) = 0 uniquely determines Y for a given X . In case
(3), we have that F̂ (X, Y 1, Y 2;α) uniquely determines Y 1 as a function of X, Y 2. To simplify
notation, however, we will use only the notation F (X, Y ;α) = 0 , even if we mean an operation
brought about by F̂ .

The case where we have intermediate reaction products is modeled in our framework by
considering a part of the input X with 0 feed.

2.2. The Problem to Be Solved

The task before us is to estimate the probability that the diverted amount exceeds a certain
value. This has to be done accounting for the uncertainty in the input and for measurement
noise. The data used in the determination of the uncertainty model of the input feed can
originate in quality control data sheets or, in the case of waste processing plants, can be
obtained from simulation packages on waste state.

On the other hand, the availability of well-defined and properly quantified uncertainties for
principal thermochemical properties, such as enthalpies of formation, that properly convey the
inherent degree of confidence that may be placed in these values is an often-neglected (and
hence generally underutilized) but equally important aspect that significantly contributes to
the overall reliability and consistency of thermochemical knowledge. Active Thermochemical
Tables (ATcT, described in more detail in [15], [16], [17] and [18] ) provides the information
about the uncertainties. For example, ATcT provides a full covariance matrix between the
enthalpies of formation of all species described in reaction (5) and (6), but it also provides
entirely correlated Monte Carlo manifolds (normal distribution) that explore the uncertainty
in the equilibrium constants keq1 and keq2, which in our framework (3) are components of the
parameter set α. We use ATcT to provide the distribution information for α.

The formal problem is

P
(∫ T

0
D(t) ≥ D0

∣∣∣∣∣ O(t), t ∈ [0, T ]

)
(4)

for a given value of D0, given the statistics of α and of the noise signals N(t) and E(t).
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3. Example Chemical Problem: Steam Methane Reforming

As an example of the application of our technique, we have used the steam methane reforming
(SMR) process. This process is important in the petrochemical industry for the production of
hydrogen used in oil refining. Our framework is applicable for virtually any chemical process.
We have nonetheless chosen SMR as an example because it is one of the few that are important,
yet simple enough to describe, and for which the data are publicly available.

In this case, we have considered as the variable of interest that may be diverted the amount
of hydrogen. Several hazards are associated with hydrogen, ranging from respiratory ailment to
component failure, ignition, and burning. The primary hazard with hydrogen is the production
of a flammable mixture, which can lead to a fire or explosion. Because its minimum ignition
energy in air at atmospheric pressure is about 0.2 mJ, hydrogen is easily ignited. In addition,
hydrogen gas is colorless, odorless, and not detectable by human senses. It is lighter than air
and hence difficult to detect where accumulations cannot occur. Nor is it detectable by infrared
gas-sensing technology.

Therefore the tracking of hydrogen in SMR is a good example of an application for model-
based assessment of diversion. We now present in detail the way the chemistry is inserted in
our framework, which can serve as an example for any other chemical process.

3.1. The Description of the Steam Methane Reforming Reaction

The study of kinetics for SMR process can trace back to early 18th century [9, 19]. Many
kinetic models for SMR have been proposed afterwards [1, 2, 4, 11, 26].

The reaction equations chosen here for SMR are

C H4 + H2 O ! CO +3 H2, (5)
C O+ H2 O ! C O2 + H2 . (6)

We need to derive the rate equations too derive the kinetics for chemical reactions. The rate
equation is used to link the rate of a reaction to the concentration of the various chemical
reactants [10]. According to [21], the rate equations of (5) and (6) can be computed as

r1 = a1 exp(−Ea1RT )
√

P (zC H4 −
zCOz3

H2
P 2

keq1zH2 O
), (7)

r2 = a2 exp(−Ea2RT )
√

P (zC O − zC O2zH2

keq2zH2 O
), (8)

where R = 10.73 ft3 psi ◦R−1 lb-mol−1, T = 1800◦R= 1000 K, a1 = 127 lb-mol/h lb
of catalyst atm, a2 = exp(8.02) lb-mol/h lb of catalyst atm, Ea1 = 15800 Btu/lb-mol,
Ea2 = 25000Btu/lb-mol, P is the total pressure and zi, i ∈ {C H4, C O, H2, H2 O, CO2} is
the mole fraction for gas i, in other words,

zi =
yi∑
i yi

.

Here yi, i ∈ {CH4, C O, H2, H2 O, C O2} are moles for the gases. According to the ideal gas law
[20], we have

PV = RT
∑

i

yi.



6

Note that the equilibrium constants keq1 and keq2 at 1800◦R (1000 K ) for reaction (5)
and (6) are 25.6961± 0.22 atm2 and 1.4263± 0.0064 by considering the variations due to the
uncertainties in the equilibrium constants (where the uncertainties are given as 95% confidence
intervals, as is the norm in thermochemistry. The uncertainties in the two equilibrium constants
are not entirely independent; their correlation coefficient is 0.221.).

Assume volume V = 1, and replace P with RT
∑

i yi. Then, we have

r1 = a1 exp(−Ea1 RT)
√

RT(
yCH4√∑

i yi

−
yC Oy3

H2
(RT)2

keq1yH2 O

√∑
i yi

), (9)

r2 = a2 exp(−Ea2 RT)
√

RT(
yCO√∑

i yi

− yCO2yH2

keq2yH2 O

√∑
i yi

). (10)

If the input feed at time t of H2 O and C H4 are x̂H2 O(t) and x̂C H4(t), respectively, the dynamic
equations then are

dyCO

dt
= r1 − r2, (11)

dyH2

dt
= 3r1 + r2, (12)

dyCO2

dt
= r2, (13)

dyH2 O

dt
= −r1 − r2 + x̂H2 O(t), (14)

dyCH4

dt
= −r1 + x̂C H4(t). (15)

The initial value for this dynamics system is the initial input. The solution of the above system
should be positive. If any of the chemicals goes to zero, then the RHS of equation representing
the chemicals variation will be positive; that is, the mole of it would be increasing and away
from zero. This dynamics system preserves the law of conservation of mass when it comes to
the moles of C, H, and O . Denote the moles of C, H, and O by x̄C, x̄H and x̄O2 , respectively.
We then get

dx̄C

dt
= x̂C H4(t), (16)

dx̄H

dt
= 4x̂C H4(t) + 2x̂H2 O(t), (17)

dx̄O2

dt
= x̂H2 O(t). (18)

Now we consider the steady-state process. That is, we are requiring that r1 and r2 both be
zero. We therefore obtain that

yCH4 [l] = (RT)2
yCO[l] · yH2 [l]3

keq1yH2 O[l]
, (19)

yCO[l] =
yC O2 [l] · yH2 [l]

keq2yH2 O[l]
. (20)

Suppose x̂C H4 [l] and x̂H2 O[l] to be the feed of C H4 and H2 O at the time tl, respectively.
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We will explain the mass balance equations in the case of discrete time and lagging of the
equilibration reaction product, as in the second discrete time case in Section 2. We also assume
that the product H2 and byproduct C O2 are taken out at each time tl, leaving only C H4 and
H2 O, and with newly added C H4 and H2 O participating in reaction at next step. Define

x̄C[l] = x̂C H4 [l] + yCH4 [l − 1] + yCO[l − 1], (21)
x̄H[l] = 4x̂CH4 [l] + 4yCH4 [l − 1] + 2x̂H2 O[l] + 2yH2 O[l − 1], (22)
x̄O[l] = x̂H2 O[l] + yH2 O[l − 1] + yC O[l − 1]. (23)

We have another three equations from decomposing and reaction products in their fundamental
components and doing the mass balance:

yCH4 [l] + yCO[l] + yC O2 [l] = x̄C[l], (24)
4yCH4 [l] + 2yH2 O[l] + 2yH2 [l] = x̄H[l], (25)
yCO[l] + 2yCO2 [l] + yH2 O[l] = x̄O[l]. (26)

Combining (19) – (26) together with the condition that y is always positive gives the nonlinear
system.

3.2. Description of the Problem in Our Modelling Framework

We now describe the problem in the language of Section 2. The input or feed vectors are the
moles of C H4, C O, and H2 O (the feed of carbon monoxide, which is an intermediate product,
will be taken to be zero, but the input would be whatever is in the plant at that moment).
The plant output vector, Y, contains the plant output components C O2 and H2, in addition
to the feed components, CH4, CO, and H2 O . That is,

X =




xC H4

xH2 O

xC O



 and Y =





yCH4

yH2 O

yCO

yCO2

yH2




,

with the vector Y X having the same type of components as X . The only part that is left is
to define the functions F1 and F2 from which any of the formulations from Section 2 can be
found. We have

F1(X, Y ;α) =



 yCH4 − (RT)2
yC O·y3

H2
keq1yH2 O

yCO − yCO2 ·yH2
keq2yH2 O



 .

Here the vector of reaction parameters is α = (keq1, keq2) . Suppose the effective input is

XIN =




xIN

C H4

xIN
H2 O

xIN
C O



 .

From the mass balance equations, we have (recall, C O feed is 0, i.e., X̂CO = 0)

F2(XIN , Y ) =




xIN

C H4
+ xIN

C O − yC H4 − yCO − yCO2

4xIN
C H4

+ 2xIN
H2 O − 4yCH4 − 2yH2 O − 2yH2

xIN
H2 O + xIN

C O − yC O − 2yCO2 − yH2 O



 .
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It can be seen that equations (21) and (26) are immediately obtained by applying the second
discrete time approach in Section 2. From here on, we will use the abstract format with the
definition of X , Y , F1, F2 above and the definition of the functions F and F̂ from Section 2.

4. Discrete Time Model

We denote by l = 0, 1, 2, · · · , L− 1 the output time indices and by tl, for the same indices, the
output times (generally equally spaced).

The output noise N(t) and the input noise E(t) are modeled as quasi-stationary, colored
noise processes or, equivalently, as filtered white noise processes (see [5, 24]). In most
applications of interest, there is correlation between successive input and output samples,
which is responsible for the coloring.

To obtain them, we use the white noise signals (random numbers vectors) ξ = [ξ0, · · · , ξL−1]
and η = [η0, · · · , ηL−1]. Components in ξ and η are independently distributed. Suppose
g = [g0, · · · , gM ], and h = [h0, · · · , hM ] are filtering parameters and w0(tl), and wN (tl)
l = −M, · · · , L − 1, are intensity parameters. Furthermore, let w0(tl) = wN (tl) = 0 if l < 0.
With these notations, we have that the noise vectors E(tl) and N(tl) are defined as

E(tl) =
l∑

j=l−M

hl−jw0(tj)ξj , 0 ≤ l < L, (27)

N(tl) =
l∑

j=l−M

gl−jwN (tj)ηj , 0 ≤ l < L. (28)

Note that, if w0 and wN do not depend on t, then the noise signals E(t) and N(t) are properly
stationary.

We assume that this can be carried out by the linear filter with intensity parameters
w1(tl), l = −M, · · · , L − 1 with w1(tl) = 0 if l < 0, and filtering parameters e = [e0, · · · , eM ],
which result in the following input-intermediate rule:

X(tl) = X0(tl) + E(tl), 0 ≤ l < L, (29)

X̂(tl) =
l∑

j=l−M

el−jw1(tj)X(tj), 0 ≤ l < L. (30)

Here, X0(tl), l = 0, 1, 2, · · · , L − 1, is the deterministic part of input data.
The plant is modeled by (2) or (3). For the purpose of discussion we use (3), which results

in
F̂ (X̂(tl), Y (tl), Y (tl−1);α) = 0.

We measure the output datum: O(tl), l = 0, 1, 2, · · · , L−1, subject to the output noise N(t)
described above.

The problem (4) in the discrete time framework is as follows: Compute

P
(

1/L
L−1∑

l=0

(Y (tl) + N(tl) − O(tl)) ≥ D0

)
(31)
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for any D0.
If we know the density functions of ξl and ηl, we can get the density functions of E(tl)

and N(tl) after applying [8, Theorem 12.7, Theorem 15.3] repeatedly. We can therefore obtain
the density function for X̂(tl). Suppose that we have an explicit expression of solution of the
nonlinear system in (3). We can get the density function of D(tl) by known density functions
of the elements of X̂(tl) and Y (tl−1). We therefore can compute the probability required in
(31). Usually, however, the probability cannot be calculated this way. because it is always very
difficult to find the density functions and get the explicit expression of the solution even when
L is moderately large.

Thus, we need to use Monte Carlo sampling (see [6, 14]) of the noise E(t) and N(t) and of
the physical parameters α in order to numerically estimate the probability in (4).

4.1. Computation of the Upper Bound of the Probability by Using Chebyshev Inequality

To shorten the length of the formula, define D̄ = 1/L
∑L−1

l=0 D(tl), Ȳ = 1/L
∑L−1

l=0 Y (tl),
N̄ = 1/L

∑L−1
l=0 N(tl) and Ō = 1/L

∑L−1
l=0 O(tl). To compute the estimation of the probability,

we need to know estimation of variance σ and mean µ of Ȳi + N̄i, that is, the sample variance
S2 and sample mean µ̄. Here i is the index of the component of the output, Oi, that is targeted
for the diversion assessment.

In this subsection we describe an approach for computing the probability form (4) and (31).
Of course, one can try to compute the probability by doing simulations and counting the
number of times the diverted output exceeds the value D0, and dividing by the total number
of scenarios. The difficulty is that the approach is well known to be slow to converge if the
entire distribution, for all D0 values, is required. This situation may be acceptable if one has
a functional reliable error estimate. The problem is that the error estimates usually available
assume either that one is close to the asymptotic regime of the normality, which would be
unrealistic if one stops well before convergence, or that a good prior distribution is available,
which would introduce extra nonquantifiable risk in the assessment.

In addition, for multiple output stream diversion, the density of the samples drops with
the inverse power of the number of the streams, which may result in real power estimates for
some D0 values. We defer assessment of multidimensional output stream diversion to future
research. Nonetheless, we want to consider only approaches that are known to scale well. We
thus decided on the following compromise approach. The average and standard deviation of
the diverted output is computed by sampling and estimation using an asymptotic normality
assumption, since these are known to converge fast and good ways to accelerate them exist.
When estimating the probability, however, we will use a Chebyshev-theorem approach, which
makes no assumption about the normality of the convergence of the estimate of the probability
in (4), but only about the mean and standard deviation.

To estimate the required probability, we use the following lemma.

Lemma 1. Assume that f(x) is a monotonic and increasing function, P(D ≥ f(x)) ≤ α, and
P(x ≥ x̂) ≤ β. Then P(D ≥ f(x̂)) ≤ α + β.

Proof: Obviously, it follows that

P(D ≥ f(x̂)) = P([D ≥ f(x̂)] ∩ [x ≥ x̂]) + P([D ≥ f(x̂)] ∩ [x < x̂]).
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For the first term at the left of the equal mark, it can be easily verified that

P([D ≥ f(x̂)] ∩ [x ≥ x̂]) ≤ P(x ≥ x̂) = β.

If x < x̂, then f(x) ≤ f(x̂), because f(x) is a monotonic and increasing function. Thus

P([D ≥ f(x̂)] ∩ [x < x̂]) ≤ P(D ≥ f(x)) = α,

which proves the claim. !

To provide the actual probability estimates, we need to identify statistics gµ

(
N̄k

i + Ȳ k
i , P0

)

and gσ2
(
N̄k

i + Ȳ k
i , P0

)
such that P

(
µ ≤ gµ

(
N̄k

i + Ȳ k
i , P0

))
and P

(
σ2 ≤ gσ2

(
N̄k

i + Ȳ k
i , P0

))

are bounded above with a high level of confidence.
To have a high level of confidence in the probability levels of such statistics, we need to

use a minimum of assumptions in deriving them. In our derivation of gµ and gσ2 , we use the
following fact (see [8, 27]).

Fact 1 (central limit theorem) If the data, X1, · · · , XK are i.i.d. with mean µ and finite
variance σ2, then Zn = (

∑K
k=1 Xk−Kµ)/(

√
Kσ) converges in distribution to Z, which follows

standard normal distribution.
Assume that observable data X1, X2, · · · , XK satisfy following conditions:

• X1, X2, · · · , XK are i.i.d,
• X1, X2, · · · , XK are nonnegative.

The first condition on the data is required by the central limit theory. The second condition
on the data implies µ̄ > 0; hence, by increasing K, we can make µ̄ − zβ

S√
K

> 0, which will
be used in derivation of gσ2 . Obviously, the data Y k

i + Nk
i we obtained in the pseudo-code in

Section 4.2 through the Monte Carlo method satisfy the first property. Because the example
models the chemical process, Y k

i must be positive and Nk
i is at noise level; hence, the second

property will also be satisfied by our sampling method.
Because X1, X2, · · · , XK are i.i.d, if the sample size K is large enough, then (µ̄−µ)/(S/

√
K)

is approximately a N(0, 1) random variable based on central limit theory. Hence, practically,
if K ≥ 30, we can estimate the one-sided confidence interval of mean µ at β confidence level
as below (see [27])

P
(
µ ≤ µ̄ + zβS/

√
K

)
≈ 1 − β, (32)

where zβ can be found in the standard normal table [27]. Equation (32) also implies

P
(
µ ≥ µ̄ + zβS/

√
K

)
≈ β. (33)

Therefore,
gµ(Xk,β) = µ̄ + zβS/

√
K. (34)

Let m̄′
2 be equal to

∑K
k=1(X

k)2/K; let the expectation of (Xk)2 be m′
2, which is also called

the second raw moment; and let the sample variance of it be S′
2. According to cental limit

theory, we have
P

(
m′

2 ≥ m̄′
2 + zβ/2S

′
2/
√

K
)

≈ β/2, (35)

For the variance σ2, we have

P
(
σ2 ≥ m̄′

2 − µ2 + zβ/2S
′
2/
√

K
)

≈ β/2. (36)
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Because Xk’s are all nonnegative, we also can obtain for large enough K that

P
(
−µ2 ≥ −(µ̄ − zβ/2S/

√
K)2

)
< β/2. (37)

Applying Lemma 1, we have

P
(
σ2 ≥ m̄′

2 − (µ̄ − zβ/2S/
√

K)2 + zβ/2S
′
2/
√

K
)

< β. (38)

Hence, for the second statistic, we can use

gσ2(Xk,β) = m̄′
2 − (µ̄ − zβ/2S/

√
K)2 + zβ/2S

′
2/
√

K. (39)

Estimates of these quantities rapidly converge to their estimates, thereby making the use
of the central limit theorem valid when K is large enough. Sufficient conditions for K being
large enough for the asymptotic regime to hold are:

• K ≥ 30,
• µ̄ − zβ/2

S√
K

> 0,

• gσ2(Xk,β) > 0.

We are now ready to state the second result we will use.

Lemma 2. Given a positive number P0, if

P
(
µ ≥ gµ(N̄k + Ȳ k, P0)

)
< P0/4 and P

(
σ2 ≥ gσ2(N̄k + Ȳ k, P0)

)
< P0/4,

then the probability defined in (31) is

P
(
D̄ ≥ Γ|O(t0), O(t1), · · · , O(tL−1)

)
≤ min

(
P0/2 + ψ(Γ, Ō)/2, 1

)
, (40)

where

ψ(Γ, Ō) =

{
2, if Γ ≤ gµ(N̄k + Ȳ k, P0) − Ō,

2
(
1 + (Γ−gµ(N̄k+Ȳ k,P0)+Ō)2

gσ2 (N̄k+Ȳ k,P0)

)−1
, o.w.

Proof: Let 0 < P1 ≤ 2. According to the one-sided Chebyshev’s inequality (see [25]), it follows
that

P
(

D̄ − µ + Ō

σ
≥

√
(2 − P1)/P1

)
≤ P1/2.

Applying Lemma 1 twice, we have

P
(

D̄ ≥
√

gσ2(N̄k + Ȳ k, P0)(2 − P1)/P1 + gµ(N̄k + Ȳ k, P0) − Ō

)
≤ P0/2 + P1/2.

Define Γ =
√

gσ2(N̄k + Ȳ k, P0)(2 − P1)/P1 + gµ(N̄k + Ȳ k, P0) − Ō. We then can solve if
Γ > gµ(N̄k + Ȳ k, P0) − Ō,

P1 = 2
(

1 +
(Γ− gµ(N̄k + Ȳ k, P0) + Ōi)2

gσ2(N̄k + Ȳ k, P0)

)−1

.

If Γ ≤ gµ(N̄k + Ȳ k, P0) − Ō, let P1 = 2. Replacing P1 with ψ(Γ, Ō) completes the proof. !
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4.2. Assessment Algorithm

We use Monte Carlo sampling to compute the sample mean µ and sample variance S2 together
with the estimation of second raw moment m̄′

2 and its sample variance, (S′
2)2 in the ith

component of the output stream, Oi(t). When used in our SMR example, i refers to the
hydrogen stream, H2. A pseudo-code is provided below.

Sample uniformly ξk
l and ηk

l , k = 1, · · · , K by Monte Carlo methods
Sample αj , j = 1, · · · , J from Monte Carlo manifolds by ATcT
for k = 1 : K

for l = 0 : L − 1
Compute Xk(tl), X̂k(tl) and Nk(tl)
for j = 1 : J

Solve nonlinear system (3) with parameter αj at tl
end

end
Compute Ȳ k,j

i = 1/L
∑L−1

l=0 Y k,j
i (tl)

Compute N̄k
i = 1/L

∑L−1
l=0 Nk

i (tl)
end
Compute ūj = 1/K

∑K
k=1(Ȳ

k,j
i + N̄k

i )
Compute (Sj)2 = 1/(K − 1)

∑K
k=1(Ȳ

k,j
i + N̄k

i − ū)2

Compute m̄′j
2 = 1/K

∑K
k=1(Ȳ

k,j
i + N̄k

i )2

Compute (S′
2
j)2 = 1/(K − 1)

∑K
k=1((Ȳ

k,j
i + N̄k

i )2 − m̄j
2)2

Compute 1/J
∑J

j=1 min
(
ψj(Γ, Ō)/2 + P0/2, 1

)
and plot it

4.3. Numerical Results for Monte Carlo Methods for SMR

We simulate the SMR reaction described in Section 3. When simulating αj , we use the active
table software ATcT. In addition, in the case of SMR, αj =

(
kj

eq1, k
j
eq2

)
.

In terms of parameters described in the beginning of Section 4, we use w0 = 1 and w0 = 10,
where w1(tl) and wN (tl) are also constants, for l = 0, 2, . . . , L − 1 (the stationary noise case).
The filters used correspond to white noise, that is, hm = 0, em = 0, and gm = 0, for m '= 0,
and 1 otherwise. We look for the diverted amount of hydrogen, i = H2. We sampled kj

eq1

and kj
eq2, j = 1, · · · , 200 by choosing from normal distributions. We then run Monte Carlo

simulation described in the above pseudo-code for each kj
eq1 and kj

eq2 and get ūj
H2

, Sj
H2

, m̄j
2,H2

and S′j
2,H2

. By averaging the RHS of (40), we then have the results shown in Figure 2 for the
average surface of P0/2 + ψ(ΓH2 , ŌH2)/2, for two input noise variance level (1, and 10). We
read the results as follows: Given the measured output of H2, the probability that the diverted
quantity of H2 exceeds the value Γ is no larger than the value of the surface at the coordinates
Ō and Γ. We see that for certain values of Γ the result is noninformative (i.e., the probability
is 1). But the value of the probability surface drops quickly, and the probability drops sharply,
a sign that we can guarantee the estimate very sharply, even for large variance in the input
(almost 10% relative uncertainty!). As expected, larger input variance results in a smoother
and less sharp probability estimate surface. Again, the only assumption we are making is that
the average and standard deviation of the diverted quantity is in the Fact 1 asymptotic regime,
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Figure 2. Average probability surface min
`
P0/2 + ψ(ΓH2 , ŌH2)/2, 1

´
of our experiment for H2, where

P0 = 0.02, w0 = 1 (top) and w0 = 10 (bottom)

a fact that is well verified by experiment.
In this model we do not include the possible control loops in a plant. For demonstrating

the framework for assessment under the uncertainty, this is not an essential component. The
equations above could be easily modified to include feedback, and they already do to the extent
where unconsumed reactant is refilled, as described in (3). In addition, we point out that for
waste reprocessing plants, where the reactants are difficult to measure on a continuous basis,
online control is not implemented in many circumstances in any case.

5. Conclusions and Future Research

We have presented a model-based framework for assessing the risk of diversion of a given
reaction product in a chemical plant in the presence of uncertainty. We have accounted for
both feed and model parameter uncertainties. We have shown how the framework can be
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applied to chemical reaction models by tracking of hydrogen in the steam methane reforming
reaction.

In future research, we will address the issue of obtaining superior estimates where we consider
the entire covariance matrix that is obtained by our simulation. Therefore, in the language of
this application, correlations between outputs would provide asymptotically sharper estimates
than the one we have already obtained. In addition, we will be interested in formulating
and solving the problem for the case with dynamics and a more faithful description of the
input/output mechanism in the chemical plant (rather than all in - equilibration - all out, as
we do at the moment). We will also apply quasi-Monte Carlo methods [12, 22] to sample the
parameter α to speed up the algorithm.
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APPENDIX

List of Notations

• L: Number of knots in time space
• M : Length of filter
• K: Number of trials
• J : Number of samples for physical parameters α
• w0: Intensity parameter
• w1: Intensity parameter
• wN : Intensity parameter
• h, g, e: Filters
• ξ, η: Random variables
• X0: Determinant part of input
• X̂: Real input
• Y : Calculated output
• N : Measurement Noise
• D: Diverted part
• O: Observed output
• D̄ := 1/L

∑L−1
l=0 D(tl),

• Ȳ := 1/L
∑L−1

l=0 Y (tl),
• N̄ := 1/L

∑L−1
l=0 N(tl)

• Ō := 1/L
∑L−1

l=0 O(tl).
• µH2 := E(ȲH2 + N̄H2)
• σ2

H2
:= Var(ȲH2 + N̄H2)

• µ̄: Sample mean
• S2: Sample variance
• m̄2: Second raw moment
• (S′

2)2: Sample variance of i.i.d X2
i
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